DEOXYOKAMURALLENE AND ISOOKAMURALLENE, NEW HALOGENATED NONTERPENOID C $_{15}$ -COMPOUNDS FROM THE RED ALGA LAURENCIA OKAMURAI YAMADA $^1)$ Minoru SUZUKI and Etsuro KUROSAWA* Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060 Two new C_{15} -bromoallenes, deoxyokamurallene and isookamurallene, have been isolated from the title alga, and their structures were determined on the basis of their spectroscopic evidence. In the recent paper, 2) we reported that okamurallene isolated from the red alga Laurencia okamurai Yamada (Rhodomelaceae, collected at Bikuni, Hokkaido) was a unique C_{15} -metabolite not yet encountered in the halogenated C_{15} -nonterpenoids from the algae of the genus Laurencia and its structure has been shown by formula k excluding the stereochemistry at C-10 and C-12. In this communication, we describe the structures of two new metabolites, deoxyokamurallene (k) and iso-okamurallene (k), also isolated as the minor constituents from Bikuni's k. okamurai. Repeated silica gel column and thin-layer chromatography of the neutral extracts ^2) has led to the isolation of deoxyokamurallene (2) (0.2% of the extracts) and isookamurallene (3) (0.4%) along with okamurallene (1) and other unknown C_{15} -bromoallenes. Deoxyokamurallene (2), $C_{15}H_{16}O_2Br_2$ (m/e 390, 388, and 386; M^+), oil, $[\alpha]_D^{23}$ +220° (c 0.84; CHCl $_3$), showed in its IR, 3) 1 H and 13 C NMR (Table 1) spectra the presence of a bromoallene side chain [v_{max} (film) 1960 cm $^{-1}$; δ (CDC1 $_3$) 5.45 (1H, dd, J=6.5 and 6.0 Hz) and 6.09 (1H, dd, J=6.0 and 1.5 Hz); δ (CDC1₃) 202.5 (s), 99.5 (d), and 73.7 (d)], a trisubstituted vinyl ether functionality [ν_{max} 1660 and 1190 cm⁻¹; δ 158.0 (s) and 90.1 (s)], and a 1,2-disubstituted cyclopropane ring [δ 17.8 (d), 15.7 (d), and 12.3 (t)] as same as okamurallene ($\frac{1}{4}$). Furthermore, the existence of a -CH=CH-CH $_3$ grouping in $\stackrel{7}{\sim}$ was indicated by the 1 H NMR spectrum (vide infra). The signals of the olefinic protons were observed at δ ca. 5.1 and ca. 5.5 as multiplets, partly overlapping with the signals of the $C_q\text{-H}$ (δ 5.04) and the C_3 -H (δ 5.45), respectively. Irradiation of the vinyl methyl signal at δ 1.71 (dd, J=7.0 and 1.5 Hz) simplified the multiplet at δ ca. 5.5 into a clear doublet (J=11.0 Hz), and the same irradiation effected a change in the shape of the one-proton multiplet due to another olefinic proton at δ ca. 5.1. Conversely the methyl signal was collapsed to a doublet (J=7.0 Hz) by irradiation at δ ca. 5.1 and further collapsed to a doublet (J=1.5 Hz) by irradiation at δ ca. 5.5. The stereochemistry of this double bond is unambiguously indicated to be cis configuration by the value (11.0 Hz) of the coupling constant between the pertinent olefinic protons. Above-mentioned data together with the proton spin decoupling experiments and the close resemblance of the spectral data of 2 and 1 (Table 1) reveal that deoxyokamurallene is 132-13,14-deoxyokamurallene. Isookamurallene (3), $C_{15}H_{16}O_3Br_2$ (m/e 406, 404, and 402; M^+), oil, $[\alpha]_D^{27}$ +130° (c 1.00; CHCl₃), is an isomer of okamurallene (1) and was shown to possess the same carbon skeleton including a bromoallene side chain and a cyclopropane ring as 1 and 2 by comparison of the spectral properties with those of 1 and 2. Further the IR $[\nu_{max} \ 1715 \ cm^{-1}]$ and $^1H \ NMR \ [\delta \ 2.17 \ (3H, \ s)$ and 2.56 (2H, d, J=7.0 Hz)] spectra indicate the presence of a -CH-CH₂-CO-CH₃ moiety in 3, thus showing that isookamurallene must be flanked on C-12 by a -CH₂-CO-CH₃ grouping instead of -CH-CH-CH₃ in 1. The stereochemistries at C-10 and C-12 in 1, 2, and 3 were deduced from the 1 H (100 MHz) and 13 C NMR data for okamurallene (L) and deoxyokamurallene (L) in CDC1 $_3$ Table 1. | | Multiplicity, J (Hz) | dd, J=6.0, 1.5 | | dd, J=6.5, 6.0 | ш | dd, J=13.5, 10.0 | dd, J=13.5, 5.0 | | | d, J=6.5 | dd, J=6.5, 6.5 | ш | ш | ш | ш | m (dq, J=11.0, 7.0) | dd, J=7.0, 1.5 | |------------|--------------------------|----------------|-----------|----------------|----------|------------------|--------------------|----------|-----------|----------|----------------|----------|----------|----------|----------------|---------------------|----------------| | 8 | 1 _{Н δ} | 60.09 | | 5.45 | 4.35 | 1.90 | 2.24 | | | 5.30 | 5.04 | 1.9 | 1.0~1.3 | 1.0~1.3 | ∿5.1 | ∿5.5 | 1.71 | | | 13 _{C &} c) | 73.7 (d) | 202.5 (s) | 99.5 (d) | 72.1 (d) | 40.9 (t) | | 90.1 (s) | 158.0 (s) | 88.5 (d) | 83.4 (d) | 15.7 (d) | 12.3 (t) | 17.8 (d) | 126.3 (d) | 128.2 (d) | 13.1 (q) | | | Multiplicity, J (Hz) | dd, J=6.0, 1.5 | | dd, J=6.5, 6.0 | E | dd, J=13.5, 10.0 | dd, J=13.5, 5.0 | | | d, J=6.5 | dd, J=6.5, 6.5 | E | E | Ħ | dd, J=4.5, 3.0 | dq, J=4.5, 5.5 | d, J=5.5 | | - ₽ | 1н б | 6,10 | | 5.44 | 4.28 | 1.90 | 2.24 ^{b)} | | | 5.31 | 5.06 | ∿1.9 | 1.1~1.3 | 1.1~1.3 | 2.80 | 3.00 | 1.36 | | | 13 _{C 8} a) | 73.9 (d) | 202.5 (s) | 99.2 (d) | 72.7 (d) | 40.8 (t) | | 91.2 (s) | 157.6 (s) | 88.4 (d) | 83.6 (d) | 12.5 (d) | 10.0 (t) | 17.0 (d) | 52.7 (d) | 56.1 (d) | 13.7 (q) | | | Carbon | 1 | 2 | 8 | 4 | Ŋ | | 9 | 7 | ∞ | 6 | 10 | 11 | 12 | 13 | 14 | 15 | a) Assignments were made with the aid of proton selective decoupling. b) Previously reported 2 chemical shift of the proton at C-5 should be corrected. c) Assignments were made by comparing the data of 1 and 2. | | .0. | · · | | | |--------------------|---------|---------|------------|--| | | ł | Ę | ₹ | | | С ₁₀ -Н | ∿1.9 | ∿1.9 | ∿1.9 | | | $C_{11}^{-H}_{2}$ | 1.1~1.3 | 1.0~1.3 | 0.85, 1.10 | | | С ₁₂ -Н | 1.1~1.3 | 1.0~1.3 | 1.45 | | Table 2. Chemical shifts of the cyclopropane protons in $\frac{1}{2}$, and $\frac{3}{2}$ chemical shifts of the cyclopropane protons (Table 2). When the substituent at C-12 changed from -CH-CH-CH₃ in 1 into -CH=CH-CH₃ in 1, no marked effect on the chemical shifts of the 10-H, the 11-H₂, and the 11-H was observed. On the other hand, in 13, the remarkable change in the chemical shifts of the 11-H and one of the methylene protons at C-11, which seems to be 12-to the substituent at C-12, was observed and 13-H signal showed no prominent shift from that of 13, suggesting that the proton at C-10 should be 12-to the substituent at C-12. Thus the structures of okamurallene, deoxyokamurallene, and isookamurallene would be represented by formulas 1, 2, and 3 respectively. ## References - Part 48 of "Constituents of Marine Plants". Part 47; T. Suzuki, H. Kikuchi, and E. Kurosawa, Bull. Chem. Soc. Jpn., submitted to publication. - 2) M. Suzuki and E. Kurosawa, Tetrahedron Letters, 22, 3853 (1981). - 3) IR data for deoxyokamurallene (2): $v_{\rm max}$ (film) 3040, 1960, 1660, 1190, 1115, 1075, 1025, 935, 910, and 850 cm⁻¹. - 4) IR, 1 H and 13 C NMR data for isookamurallene (3): ν_{max} (film) 3050, 1965, 1715, 1660, 1200, 1118, 1035, 1015, 995, 860, and 845 cm⁻¹; δ (100 MHz, CDC1₃) 0.85 (1H, m; C-11), 1.10 (1H, m; C-11), 1.45 (1H, m; C-12), 1.8-2.1 (2H, m; C-5 and C-10), 2.17 (3H, s; C-15), 2.24 (1H, dd, J=13.5 and 5.0 Hz; C-5), 2.56 (2H, d, J=7.0 Hz; C-13), 4.30 (1H, m; C-4), 5.04 (1H, dd, J=6.5 and 6.5 Hz; C-9), 5.29 (1H, d, J=6.5 Hz; C-8), 5.45 (1H, dd, J=6.5 and 6.0 Hz; C-3), and 6.10 (1H, dd, J=6.0 and 1.5 Hz; C-1); δ (CDC1₃), 207.5 (s; C-14), 202.5 (s; C-2), 158.0 (s; C-7), 99.4 (d; C-3), 91.1 (s; C-6), 88.4 (d; C-8), 83.6 (d; C-9), 74.0 (d; C-1), 72.5 (d; C-4), 43.4 (t; C-13), 40.9 (t; C-5), 29.6 (q; C-15), 14.5 (d; C-12), 12.8 (d; C-10), and 11.0 (t; C-11). (Received December 14, 1981)